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A line vortex which has uniform vorticity 20, in its core is subjected to a small two-
dimensional disturbance whose dependence on polar angle is ¢, The stability is
examined according to the equations of compressible, inviscid flow in a homen-
tropic medium. The boundary condition at infinity is that of outgoing acoustic waves,
and it is found that this capacity to radiate leads to a slow instability by comparison
with the corresponding incompressible vortex which is stable. Numerical eigenvalues
are computed as functions of the mode number m and the Mach number M based on
the circumferential speed of the vortex. These are compared with an asymptotic
analysis for the m = 2 mode at low Mach number in which it is found that the growth
rate is (r/32) M4Q, in good agreement with the numerical results.
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1. INTRODUCTION

When a straight vortex filament, with uniform vorticity in its core is slightly disturbed, it will
oscillate. This was shown by Lord Kelvin (1880). In a compressible fluid these oscillations can
excite sound waves which will carry energy away to infinity. If the amplitude of the oscillations
is prescribed and the vortex filament regarded as a compact sound source, the intensity of the
acoustic radiation can be calculated from the Lighthill theory (Broadbent 1976). The period
of oscillation of the vortex filament is of the order of the rotation period of fluid particles in the
vortex core, so that the compactness condition, necessary for the Lighthill theory to be applicable,
is satisfied if the Mach number based on the maximum velocity of swirling is small. However,
this condition will not be satisfied for the vortex filaments which form in a supersonic mixing
layer, so thatitis of interest to consider the radiation without imposing the compactness condition.
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354 E. G. BROADBENT AND D. W. MOORE

In the Lighthill theory, the flow producing the noise is regarded as being prescribed and
modifications to this flow due to the radiation are ignored. For the special class of flows considered
here, namely infinitesimal disturbances to a vortex filament in a compressible inviscid fluid,
we can avoid both these assumptions and our results are exact. However, we have not considered
nonlinear effects. We neglect viscosity and thermal conductivity and consider the undisturbed
vortex to be specified by the swirl velocity ¥ (r) and the entropy S(r) where r is distance from the
axis of the vortex. Once these distributions are fixed the pressure, density and local sound speed
can be determined. The equations governing small disturbances to this vortex are derived in
§ 2 and are shown to lead to an energy-like integral constraint. We consider only one Fourier
component of the disturbance, which is thus characterized by an azimuthal wave number m,
where m takes positive integral values and a corresponding angular frequency w. The angular
frequency will be determined by demanding that the disturbance satisfies the equations of
motion and the radiation condition.

This eigenvalue problem is set up in § 3, for the special case in which the entropy §is uniform
and there is uniform vorticity in the vortex core. The great advantage of this choice of swirl
velocity distribution is that the results of our analysis reduce to Kelvin’s in the incompressible
limit and, in particular, we know that in this limit the vortex is stable. We cannot, without
detailed calculation, tell whether a vortex will be unstable to non-axisymmetric disturbances
even if the Rayleigh criterion shows it to be stable to axisymmetric disturbances. We have picked
uniform entropy for want of any information about the entropy distribution in actual flows; it
is clear, however, from the form of the equations that entropy gradients can be significant. We
summarize Kelvin’s results in § 4 and describe our numerical procedure and results in §5. We
define a Mach number M based on the swirl velocity and local sound speed at the vortex core
boundary and we present our computed values of w(m, M). The most striking feature of these
results is that for all M > 0 and all the values of m considered Im (w) < 0, corresponding to
instability of the flow. This instability has been introduced by the ability of the system to radiate,
which in turn destroys the n/2 out-of-phase relation in the incompressible Reynolds stress. The
effect is small, the e-folding time of the instability being at least 15 rotation periods. It is surprising
that the radiative energy loss does not cause the oscillations to decay. The growing oscillations
must draw energy from the mean flow; however, a proper discussion of the energetics requires
solution of the governing equation to second order in the disturbance amplitude and we have
not attempted this.

When the Mach number is small, the eigenfrequency can be found by a perturbation cal-
culation. The perturbation about Kelvin’s solution is singular, because the disturbance at large
distances merges into an acoustic wave however small M is. The analysis is given in § 6 and shows
that for m = 2

Im(0) = —gsnQy M4+ O(ME1n M),

where 21/Q, is the rotation period of the core.

The stability of a compressible swirling flow confined between coaxial circular cylinders was
examined by Howard & Gupta (1962). They were interested in the extension of the Rayleigh
criterion and thus they considered axi-symmetric three-dimensional disturbances. The confined
nature of the flow prevents acoustic radiation which may explain why Howard and Gupta did
not find an instability of the type we have discovered. However, we have not found any eigen-
solutions when m = 0, so we do not know if there would be instability in this case.
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ACOUSTIC DESTABILIZATION OF VORTICES 355

2. THE DISTURBANCE EQUATIONS

A n . .
We use plane polar coordinates (7, §). Then if the velocity is v, ¥ + v, 0, the equations of motion

are du, 0w, )0, 0§ 10p

ot to YT T T por (2.1)

%%%%%?% Tkﬁé%’ (2.2)

z IOUW) 1&0%)=@ (2.3)

and 6S rgs_i_”ogg 0, (2.4)

where p is the density,  is the pressure and §'is the specific entropy; for a calorically perfect gas
with constant specific heats ¢, and ¢,

S =cyInp—c,Inp+5S,, (2.5)

where §; is a constant. As usual, we write y = ¢, /c,.
The unperturbed vortex is defined by

vg = V(r),
z: _ 0,( ) } (2.6)
and S = 8(r). (2.7)
These expressions satisfy the full equations of motion provided that
p =P(r) (2.8)
and p = p(r), (2.9)
where ? =%g—f (2.10)
and S=c,Inp—c,Inp+S,. (2.11)
Clearly once V(r) and S(r) are given, j(r) and p(r) are determined.
We suppose that the vortex is slightly perturbed and write
v, = 0,(r, 6,¢),
vp = V(r)+y(r,0,¢),
p = B(r)+5(r,0,1), (2.42)
p = p(r)+p(r,06,1),
and S = 8(r)+5(r, 0,¢).

If we substitute (2.12) into the governing equations (2.1)—(2.5) we get after linearizing

o, Voo, 2V. dpp_10p
wtT % Tdrp® por’ (2.13)

0y V8110 (dV+V) 10p

prog’

¥, (2.14)

R AT
33-2
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356 E. G. BROADBENT AND D. W. MOORE
10, ) 0 Ve
atrn P sty = (2.15)
o5 Vo5 dS
TR R P (2.16)
and $=5(-ap) (2.17)

where ad(r) = yp(r)/p(r), so that ay(r) is the local sound speed in the unperturbed vortex.

Before going on to discuss how the linearized equations are to be solved, we note that the
solution of these equations satisfies an energy-like integral constraint. To deduce this, we multiply
equation (2.13) by p#, and multiply equation (2.14) by pi, and add. After some algebra we find
that

g tmm o o (dV TV to, .. 193, . podp (10 109

17552 1 1772 Ty - U 2E [
D(zpvr'l' 2pv0)+pvrl)0(dr P ) rar("”rl’) rae(ve )+ ﬁ r+‘b (7’ ar( r) += a@) (2'18)
where D Ea%+—:;a%.

However, the linearized equation of continuity (2.15) shows that

19, o 1, 1. 9,dp
;‘-6;(7'11)4'—@ —;-_)Dp—'_—pa'; (2.19)
If this is substituted into (2.18) and equation (2.17) used to eliminate g in favour of § and §,

equation (2.18) becomes

- (dV VN #§dp 10 .0 10 .
DE =~y (G = )~ =75 0P~ 35 0 (2.20)
i LA(R2 732 1 [;2
where we have defined L = Lp(07+93) +§,5_a§' (2.21)
If we define an angular average by
1 2n
Wy =g oy e, (2.22)
then application of this average to (2.20) reduces it to the form
<E> S5 h (dV V) (=9,5)dp 10 . .
< Uy 0> r + ¢ dr 7 ar( <Url’>), (2'23)

or, after integration

o Brar= [Mpn (G T rars [ R E v P 220

Cp

It must be emphasized that this integral is a deduction from the linearized equations and, while
E is what is described as the acoustic energy for sound waves propagating in a uniform gas at
rest, we are not claiming that (2.23) represents an energy balance for the disturbed vortex. The
deduction of an energy balance would require consideration of the governing equations retaining
terms of second order in amplitude of the disturbance. However, (£) is a positive definite
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ACOUSTIC DESTABILIZATION OF VORTICES 357

functional of the disturbance and is thus a convenient measure of its amplitude. We shall use
(2.24) later, both as a check on the numerical solution and to provide an indication of the source
of the instability; for homentropic flow (dS/dr = 0) equation (2.6) implies that § = 0, so that the
entropy contribution vanishes in equations (2.20)-(2.24).

3. THE EIGENVALUE PROBLEM

We are interested in calculating the eigenfrequencies for the vortex. Thus we write
.(r, 0,t) = ,(r) exp [i(wt +mb)], (3.1)

with a similar assumption for the other disturbance quantities; use of the same symbol for a
disturbance quantity and its Fourier coeflicient will not lead to confusion, because we will
consider only the particular ¢ and ¢ dependence embodied in (3.1) from this point on. We
restrict m to be a positive integer or zero. This involves no loss of generality and simplifies the
presentation of the results. If the substitution (3.1) is made throughout the linearized governing
equations (2.13)—(2.17) a system of ordinary differential equations results and this system can
be condensed into a pair of equations for (r) and 7,(r). This pair of equations is

Lo pli- e [ 022, (3.2)
e o
where o= w+@, (3.4)
and O = d—rlz+lr7 (3.5)

is the vorticity in the undisturbed vortex.
This system has a regular singular point at » = 0 introduced by the polar coordinates and

singular points where o(r,) = 0 or _
w=—=mV(r,)/rec.

"This corresponds to a disturbance propagating around the circle 7 = 7, at just the swirl velocity.
This means that there is a critical layer in the solution; however, the singular point lies in the
irrotational part of the flow, and is at a value of  with a small imaginary part since o is complex.
The solution is thus analytic at r = 7., and the singularity from the governing equations can be
removed by a change of variable; in particular there is no need to invoke viscosity to determine
the phase of the inviscid solution.}

All the detailed analysis has been done for a vortex with uniform entropy and with vorticity
that is uniform in 0 < r < @ and zero for r > a. Hence

— {Qr r < a,

Vi = Qa/r r> a. (3.6)

T We are grateful to Professor J. T. Stuart, I".R.S. for a discussion of this point.
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358 E. G. BROADBENT AND D. W. MOORE

We change the equations to non-dimensionalized form using the values of the physical variables

atr = a. Thus
r = ax, \

V(r) = QuaV (x),

ay(r) = ay(a) é(x),

o(r) = Qy0(x), (3.7)
w = Qy f,
B(r) = Q0 (),
and p(r) = pla) p(x),

while new dependent variables are defined by

0,(r) = Qo al,
> _ } (3.8)
and p(r) = p(a) Q¢ a?P.
This leads to the equations
dP/dx = A(x) P+ B(x) U,} (3.9)
and dU/dx = C(x) P+D(x) U, '
Vame 2mV
where A(x) = "'xé.—z - —%, (3.10)
A A~ 270 .
B(x) =1p(—0’+ﬁ , (3.11)
i(m* M2
C(x) = 5(;55_— 7 ), (312)
V2002
and D(x) = @AQ—K-{‘—{——I-. (3.13)

Here M is the Mach number characterizing the motion of the boundary of the vortex, so that
M = Qa/ay(a). (3.14)
The quantity ¢ is given by & =f+mV /x, (3.15)

and integration of the pressure balance equation (2.10) shows that the dimensionless local sound
speed ¢ is given by

1—1(y—1) M2(1 =42 1

sy - LA <) 516)
L+3(y—1) MP*(1—27%) (x> 1),

and the local density p by plx) = [3(x)]¥r-D, (3.17)

Clearly ¢ and p are positive for ¥ > 1, whatever M, but ¢ and p can vanish for x < 1. This restricts
the Mach number and

M < (Y—i—l)f = 2.2360..., (3.18)

when y = 1.4.
The eigenfrequency f will be determined by solving the system (3.9) subject to the require-
ments that P and U are well-behaved at ¥ = 0 and that P and U correspond to outward pro-

pagating waves at x = oo.
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The origin can be shown to be a regular singular point of the system (3.9) at which the well-
behaved solutions are characterized by

P~ x™,
as x—>0. (3.19)

U ~ xm—1
. - ’
This leads to expansions

P = Pxm4 Pyxmt2
oX g XM+ } (3.20)

and U= Uyxm 14 Uyamti4 ...,
and substitution into the system (3.9) enables all the coefficients to be determined in terms of

F,. These starting series are used in the numerical integrations described in § 4.

For large x, 1
i-oft).
x

5 = —ifpie) [ 1+ (5527) ] + o)

Gt e
and D=—§+O(-x13),
where p= % (3.22)

If terms of order 1/x% are ignored the governing equations (3.9) are identical with those for a
uniform medium at rest. This suggests that P and U will have expansions of the form

P = [p*x‘%exp (—M)] (1 +%+§—§+ ),

¢(o0)
) (3.23)
and U= [u*x*%exp(—-%)] (1 +%+%§+...),

where the sign of the exponential has been chosen to ensure outgoing waves. Thus we are asserting
that, because the velocity of the undisturbed vortex is contributing terms which are only 0(x~2),
the expansion must start off like that for a uniform medium at rest.

Substitution of the expansions (3.23) into the governing equations (3.9) and expansion of
4, B, C, D according to equation (3.21) leads to the equations

Mp* = p(c0) é(c0) u*,

.¢(0
_%I}A}+ﬁ1=u1’ (3 24)
TGO P
21‘}(‘2‘4!)1-*-p2 u2+f ,)/__1’
arising from the first of (3.9) and
.¢(c0
m%—l?gﬁ) Tt (3.25)
z m?¢(c0)* .é(c0
= = b
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arising from the second. The consistency of the expansions (3.23) with the governing equations
(3.9) is shown by the agreement of the first two equations in (3.24) and (3.25). If the third
equation in (3.25) is subtracted from the third equation in (3.24) a second equation involving
only p, and u, is obtained, so that p, and , are determined.

If physical variables are restored, the resulting expression for P can be written in the form

P=pr (g)&exp [_ iwr)] {1+ia0(oo) [_(4mzs—1)+ a2w2) (%Q%ﬁ)] 4 O(ai,(;))}7 (3.26)

ay(0 wr ag(co

_ (y—1) Q2q?
p= 2a3(a) + (y—1) Q2a*

where, in view of (3.22), (3.27)
If we let Q — 0, keeping w and a,(e) fixed, which corresponds to suppressing the vortex, equation
(3.26) reduces to

a\t iwr iay(00) a3(o0)

ay(o0) wr?

This expression times a constant agrees, to the indicated order, with the asymptotic expansion of

p*Hﬁ’( uad )

ay(o0)

which is, provided that © > argw > — 2, the appropriate solution for an outgoing wave in a
uniform gas at rest.

Evidently, the effect of the vortex flow field is contained in the second term in the square
brackets in equation (3.26). The effect on the wave of the vortex flow field can be obtained from
ray theory. To see this we note that in the absence of the vortex flow field the phase 3 of the wave
satisfying the eikonal equation is constant at a moving point whose coordinates are r, = a,(0) ¢,
0, = 0,. Now if we combine the second term in the square brackets with the exponential then,
with error a3(c0) /r2w?, the corresponding phase in the presence of flow is given by

Qa? or 1 fa?
wwwt+m<0+m)—m<l—§7). (329)
Thus, since 7, ~ a,(00) ¢, the phase is constant when
Qa?
e
(3.30)
T, ~ @ (oo)t(l +_1___,6’_ai_>
v 24a3(00) £2)"
This result can be obtained directly from the equations of ray theory
dt .’
v
(3.31)
df,o_ a(r) = a (OO){ _.L"@.I_
de 0 2ry )

by integrating them approximately, noting 7, ~ a,(c0) ¢ to leading order. This provides a check
on our analysis and shows that the vortex flow field affects the wave both directly by convection
in the transverse direction and indirectly through its effect on the local sound speed.
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Finally, we note that P and U must be continuous across the circle ¥ = 1 where the vorticity
changes discontinuously from its value 2 inside the vortex (x < 1) to zero outside (x > 1). This
can be proved by integrating the governing equations (3.9) from 1 —¢€ to 1 + € to find that since
A, B, C and D are bounded functions

P(14¢)—P(1—¢) = 0(e),
U(1+¢) - U(1—¢) = 0(c),

from which the result follows. Alternatively, we can derive the conditions from the requirements
that the disturbed core boundary be a material surface across which the pressure p+ is con-
tinuous.

4. THE INCOMPRESSIBLE CASE M = 0

The eigenfrequencies for a constant vorticity core in an incompressible fluid were found by
Kelvin (1880) and a summary of Kelvin’s results can be found in Lamb (1931, p. 231) while
the aero-acoustic significance of this solution has been examined by Broadbent (1976). These
results guide all our subsequent work and so we review them here.

Kelvin found that there was just one mode of oscillation for each positive value of m and that
the eigenfrequency was given by

f=1-m (m=1,23,..). (4.1)

There is no solution for m = 0, because this would involve a non-zero mass flux across circles
concentric with the vortex, and this is impossible in an incompressible fluid. The reason that
there is just one mode, instead of a discrete spectrum of modes with differing radial structure,
is that in the case of uniform vorticity, fixing the shape of the boundary fixes the vorticity dis-
tribution, and fixing the vorticity distribution fixes the velocity field. Since the vorticity in the
core is uniform the disturbances are described everywhere by a velocity potential and it follows
that

U=mxm1 (x< 1),} (4.2)
=mx~™1 (x> 1).
Then the 6 component of the momentum equation (2.14) shows that
P == 1xm (x < 1),} (43)
=i(l—m+mx?)x™ (x> 1).

We remark that P vanishes when & vanishes and that this occurs when

== ()" (4.4)

Since in the work to follow f'is close to its incompressible value (4.1), we can anticipate that P
and & will be small but finite for x close to the value ¥ = x,,, We may remark that the phase
relation between P and U changes as x increases through the value x,,, so that in this sense x,,
is a critical layer. However, since the vorticity is zero, #,, is not a singular point of the perturbation
equations, so that no special analytical treatment is called for.

Finally we note that 9, and § and 9, and 7, are exactly /2 out of phase, so that the terms on
the right hand side of the integral constraint (2.23) vanish as they must if the motion is to be
purely oscillatory.

34 Vol. 2g0. A.
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362 E. G. BROADBENT AND D. W. MOORE

5. NUMERICAL DETERMINATION OF THE EIGENFREQUENCIES
We have chosen to work with a Riccati formulation of the governing equations (3.9). Thus
we define
R="P/U, (5.1)
and we find that
dR/dx = B+ (4—D) R—CR2. (5.2)

In the incompressible case U never vanishes, except at 0 and oo, and since we are seeking the
modification to this oscillation caused by compressibility, we do not anticipate zero values of
U in our solutions.
The singularity at x = 0 is avoided by use of a starting series derived from equations (3.20).
This is
R(x,f) = rox 4722+ 0(x),

where the coefficients r, and 7, can be shown to be

ro = —i(f+m—2) p(0)/m, (5.3)
and
= T e (=3 (54

This formulation is quite satisfactory for x < 1 and given f the value R(1,f) is easily found
numerically.

If f differs from its incompressible value 1 —m by a small complex number, & will be small
and hence 4 and C will be large for x ~ x,,; because ® = 0 for x > 1, B and D remain bounded.
Now, as we pointed out in § 4, P will also be small for x ~ x,,, so that AP and CP will remain
bounded. However, the fact that the computer is having to evaluate the ratio of two small
numbers will cause loss of accuracy and it is better to eliminate the difficulty by a change of
dependent variable.

We write
S =P/oU (5.5)
and, putting
x=1/y, (5.6)
we find that
dS/dy = I+JS - KS?, (5.7)
where I=1ip/y? (5.8)
1 2M%
J-—§— o (5.9)
and
_ i
K= ﬁ( o ) (5.10)

Equation (5.7) is singular at ¥ = 0, but this can be avoided by invoking the asymptotic form of
the solutions P and U for x > 1 to show that

Szc‘(OO)ﬁ(oo){1+ic‘(oo)y+[€(oo)2 (m2—32) Hy+1) M2 m]y2+...}. (5.11)

Mf 2f M Yyl Mf
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Thus for given f, we can find S(1,f) by numerical integration. The boundary condition that P
and U are continuous across ¥ = 1 means that ¢(f) = 0, where

(f) = R(L.f) = (f+m) S(L.f). (5.12)
The function e(f) is analytic, so that Newton’s method can be used to find the roots. However
a linear interpolation method which produces an improved estimate of f from two guesses works
equally well.

Two independent computer programs were used: a double-precision real arithmetic program
run on the ICL 1906S at R.A.E., Farnborough, and a single-precision complex arithmetic
program run on the CDC 6500 at Imperial College. Fourth order Runge-Kutta integration was
used, the R.A.E. program being designed to choose the integration step to meet predetermined
error requirements. We compared the results obtained with the Riccati formulation with those
found by integration of the original pair of linear equations and found that the second method
gave much poorer accuracy.

One point about the numerical work is worth noting. The solution of the Riccati equation
(5.7) which satisfies the boundary condition

5(0) ) ()

rra (5.13)

and which corresponds to an outgoing wave, is a smoothly varying function in 0 < y < 1.
However, this does not mean that its determination is free from difficulty. Suppose a small error
is made in satisfying the boundary condition (5.13). If the corresponding solution is S(y) +7(y)
then

(Eilg = yp{J—2KS}, (5.14)

and for y < 1, this differential equation becomes

dy 2iM fy 1

3= ey O) (5.15)
so that -

7(y) = aexp ((loo)J;) (5.16)

where a is a constant. Thus when f is real the error is bounded, but oscillates rapidly; this means
that the solution no longer represents a pure outgoing wave. The integration steps must be small
enough to enable (5.15) to be integrated correctly or there is a riskt of the error growing ex-
ponentially. Thus if the integration is started at ys < 1 using the starting series (5.11) then the

integration step dy must satisfy
2

¢(o0) y3
oMf

dy < (5.17)
The transformation (5.6) compresses the acoustic far field into the range 0 < y € M and we have
to compensate for this in our choice of integration step.

The eigenvalues are shown in table 1. The main effect of compressibility is to make the vortex
unstable. The growth rate, however, remains very small throughout the range of Mach numbers
studied. The oscillation frequency is slightly reduced by compressibility below its incompressible

1 Numerical experiments reveal rapid blow up if (5.17) is violated.
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value |1 —m|. The cause of the instability appears to be the destruction of the n/2-out-of-phase
relation between v, and v, by the compressibility or, more precisely, by the capability of the
system to radiate. This interpretation is supported by calculating the terms in the energy-like
equation (2.23). The results are shown for two Mach numbers in figure 1 after non-dimensional-
izing according to equation (3.7). A noticeable feature of the graph at M = 1.0is that the acoustic
radiation in the far field falls with increasing radius. This effect results from the fact that the

TaBLE 1. f = f,+1if;

m =2
M S fi (1+£)/M? i/ M*
0.01 —0.999991 67 —0.9806 x 10—?° 0.0833 —0.09806
0.02 —0.9999667 —0.1564 x 107 0.08325 —0.09776
0.03 —-0.9999251 —0.7883 x 107 0.08319 —0.097 32
0.04: —0.999867 —0.2477 x 10— 0.08311 —0.09675
0.05 —0.999792 —0.6004 x 10-° 0.083 02 —0.096 06
0.1 —0.999175 —0.9129 x 105 0.082 52 —0.09129
0.2 —0.99672 —0.1245x 103 0.081 92 —0.07781
0.5 —0.9787 —0.2378 x 102 0.08504 —0.03804.
1.0 —0.9089 —0.9236 x 102 0.091 09 —0.00924
1.5 —0.7994 —1.1559x 102 0.089 17 —0.00228
2.0 —0.6676 —1.0074 x 102 0.08310 —0.00063
m =3 m=4
M Je Ji S S
0.1 —1.999168 —0.2287 x 10~ —2.999250 —0.4593 x 10-8
0.2 —1.996 69 —0.1097 x 101 —2.99701 —0.7766 x 10-¢
0.6 —1.9703 —0.001 542 —2.9732 —0.0005107
1.0 —1.9137 —0.006094 —2.9237 —0.003197
1.4 —1.8256 —0.009670 —2.8450 —0.006443
2.0 —1.6346 —0.009653 —2.6635 —0.007759
m=6 m=8
M f fi Je S
0.2 —4.997 62 —0.3310x 108 —6.998 06 —0.1317 x 1010
0.6 —4.9785 —0.4800 x 104 —6.9824 —0.4223 x 105
1.0 —4.9397 —0.0007411 —6.9507 —0.0001595
14 —4.8786 —0.002 354 —6.9013 —0.0007821

unsteady motion at large radius had its origin in a disturbance of the vortex core at some earlier
time. For stable motion, in which the amplitude decayed with time, the physical variables such
as 7,(r) would therefore be exponentially large in the far field, and conversely for the unstable
motion actually found they are exponentially small. Moreover, the exponential decay rate is
proportional to the magnitude of f;, which table 1 shows to be 75 times larger at M = 1 than at
M = 0.2, so that the effect is not apparent at the lower Mach number.

For an incompressible vortex, it has already been noted that there is no solution for m = 0
and that for m = 11is trivial, but these comments no longer apply when compressibility is allowed
for. It is therefore possible that solutions exist for m = 0 and m = 1, but none was in fact found
in the course of a few numerical trials.
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A (@)
1.0
M=0.2
>
D
0.5 /
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Ficure 1. Balance of energy-like terms according to equation (2.24).

no a7 ¥
i p(&v@(—a—;-—;)rdr

C A - .
e ap(a) 2 exp (— 23 % 1)
0 " ~
a—t J. (E ) r df
Curves B: 0

5 (@) Qg exp (— 2 (Opt)’
The contribution of the radiation term

= [1<8r 5o/ P (a) QO exp (= 2f; Q)

is indicated by cross-hatching: 7] shows a positive contribution (energy inflow) and shows a negative
contribution (energy outflow). In x < 1 the Reynolds stress

i (5 -7) [0

vanishes so that the energy inflow provides the whole increase in ().
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6. ANALYTICAL SOLUTION FOR SMALL M

When the Mach number M is zero the velocity field and corresponding eigenfrequency are
known exactly, so that we ought to be able to determine the velocity field and eigenfrequency
for small M by a perturbation method. However the analysis is complicated by the fact that,
even for M < 1, compressibility effects have to be allowed for in the ‘far-field’ region Mx = O(1).
Different expansions have to be introduced for x = O(1) and Mx = O(1) and matched in the
intervening region. A thorough discussion of this method in the acoustic context has been given
by Lesser & Crighton (1975).

We will consider only the case m = 2 and thus we can expand the eigenfrequency in the form

f=—1+Mf+ M4, +...; (6.1)

the expansion is essentially in powers of M2, as is evident from the dependence of 4, B, C and D
on M. However we do not assert that f; is O(1) as M — 0 and in fact f, proves to involve log M.
All that we really require is M2f; < f,_; as M— 0. We could adopt a more formal approach
using gauge functions (see Lesser & Crighton) but this is not necessary here. The Riccati formu-
lation again proves helpful, provided that the difficulty of the near-simultaneous vanishing of
P and @ is avoided by the device explained in § 5.

It is natural to divide the near field into two regions; 0 < x < 1 corresponding to the vortex
coreand 1 < x < M1,

For 0 < x < 1 we expand R in the form

R =Ry+M?R, + M*R,+..., (6.2)
where Ry = }ix (6.3)
is the incompressible solution given in equations (4.2) and (4.3). This solution has to satisfy

the condition
R(x) =ryx+0(x%) as x>0, (6.4)

where 7, is defined in equation (5.3), so that after some algebra, we find that, as x -0,

Ry =}ix+ 0(x3),

Ry = —3i(3+f£)x+0(+%), (6.5)
and Ry, =3i(1—%y—fo+3f) x+0(3).
If the coefficients of the differential equation (5.2) satisfied by R are expanded to the requisite

order in M2 and the expansion (6.2) substituted, then equations for Ry, R, R,, ... can be derived.
R, satisfies the equation

. TR, 4iR}

& YT e (6.6)
and it is easy to verify that the incompressible solution (6.3) satisfies this equation and the
boundary condition (6.5).

Since the full equation is nonlinear, the (linear) differential equation for R, involves R

s—1»
R, 5, ... Ry. Thus now that R is determined the differential equation for R, can be found, namely
4 (%3Ry) = Fx5 —1x%(1 + 2f,). (6.7)

dx
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If this is integrated, then
7i ix c
Ry =gy =7 (1+2h) + 5, (6.8)

where C'is a constant of integration. The boundary condition (6.5) shows that C = 0, so that R,
is determined. The equation for R, can now be determined and after some lengthy algebra

187 5 11
Ro=5(fr- )+ R -2 -2 et (3-Lwn-20) (6.9)
The region M < y < 1is dealt with by expanding S in the form
S = Sg+ M2ES; + M4S, + ..., ' (6.10)
where So = - (6.11)

2y
is the incompressible solution. If (6.10) and (6.11) are substituted into the governing equation
(5.7) and, keeping y fixed and O(1), the functions , J and K expanded in powers of M2 we find
that S, satisfies the equation
d(yPS) /dy = — i+ iy (6.12)
so that
S, = ——y+ ys +Cy—s (6.13)

where C is a constant of integration.

The constant C must be determined by matching to the far-field solution. Fortunately, we do
not need the details of the far-field solution to see that C must be zero. If y is O(M) then S, is
O(CM-5) so that §'is O(CM —2%). However, it is clear from the expansion (5.11) that Sis O(M )
in the far field; thus C must be zero.

Now that §; is determined the differential equation satisfied by S, can be found and, after a
lengthy calculation, we find that

_ . [y*Iny _l_ﬁ_l) oy (A g+ (222 | +iys
SZ_I[ 16 +( § 4 16)Y T\T6 32+i’fl —oy+(gggag) V| HiBy s (6.14)

where 1B is a constant of integration. The term involving the constant of integration makes a
contribution to § of O(BM ') when y is O(M). Thus we can find B only by a detailed match
to the far-field solution, which we must now discuss.

We have already noted that in the far field y is O(M) and § is O(M ). Thus variables
appropriate to the far field are

S = M5, } (6.15)
and y=My.
If we substitute into the Riccati equation (5.7) we find that
dS/dy = I +J5-K 32, (6.16)
where I, J and K can easily be determined. For fixed # we can show that
I==(1+3M2+0(MY), (6.17)

y:

J= —y:+0(M4), (6.18)
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and
= .[1 M2, . _, . X

Thus, if we expand §'in the form

S = S+ M28 + M-S, + ..., (6.20)
we find that B

dS, 1 15 /(1 N .

T y_So—l(y_z 4)S0, (6.21)

while from the radiation condition embodied in equation (5.11)

é(c0) p(0)
S(0) = =25 (6.22)
Thus Sy~—1 as y—0, (6.23)

since f = — 1+ 0(M?), {(c0) = 1+ 0(M?) and p(c0) = 14 O(M?). A scrutiny of the derivation
of (6.20) reveals that the effects of rotation do not occur at this order, which suggests that S,
should correspond to an outgoing sound wave in a uniform medium. This would have the

1 (25)

provided that © > argw > —2n. Moreover v ~ e¢~™Q[1+ O(M?)] so that, in terms of outer
variables,

pressure behaving like

P = PyHY (9-__—) — _PHP (1_) (6.24)
y y

where Py is a constant. The radial equation of motion shows that

U = iP, MH{ G_) (6.25)
leading to
iH{)(1/7)

= — el 6.26
"= ) (%20

Having constructed this solution we can easily verify that it satisfies the differential equation
(6.21) and the boundary condition (6.23).
If we expand the solution (6.26) in ascending powers of 1/i we find that

So = 57 57+ i Ing ity + 07" Ing), (6.27)
2 8 16
In2 ¢ 1 m )
where (A T TR oA v (629

¢ is Euler’s constant. Now if we put the inner expansion in outer variables we find that

1

MLS, + M2S; + MASy} = =1+ -3 +— -5 Ing +ij ({5 1n M+ B) + O(M?). (6.29)
2 8 16

If the expansions (6.27) and (6.29) are to agree, then
B+{InM =r1. (6.30)
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The agreement of the remaining terms shows that the matching procedure is working, although
we have no guarantee that it will not fail at higher order. One point should be made. The higher
terms in the inner expansion AM"S3, M?®S,, ... will make an O(1) contribution when expressed
in outer variables. However this contribution will come from the y=7, =9, ... terms in the solutions
for S, S5, ... and must therefore match higher terms in the expansion (6.27). The determination
of B will not be affected.

107%,107

T 1T 1T 1171

,..
— 4 -
PN
—_—t
T

(a)

T
1

107107

FTTTTd

107°,107° | Loy
001 002 003 005 01

L ()
0084 1+Re (M%)

0082}

(L+£)/M?

0098 o=

0.094} A

— /M

T
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0090!
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0 004 -
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008 0.1

F1GURE 2. (a) Logarithmic plot of the real and imaginary parts of f ( f = f, +if;) against M for m = 2; it may be verified
that the gradients of 1+f; and —f; are respectively 2 and 4 in agreement with the lowest-order terms in the
expansion (8.1) according to (6.33) and (6.34). (b) Variation of (1 +f,)/M? with M. The full line is taken from
equations (6.33) and (6.34) and the circles are results from the numerical solutions (table 1). (¢) Variation of
— f,/ M4 with M. The full line is taken from equation (6.34) and the circles are numerical results. The analysis
of § 6 indicates that Im f; would contain a constant and a log M term, so a curve fj/M* = a+bM2+cM?2In M
has been fitted through the circles at M = 0.01, 0.02, 0.03, and is shown dashed. The fitted values are
a = —0.0981752, b = 0.237098, ¢ = — 0.203522; the value for 2 may be compared with that found analytically
in (6.34) which is —0,0981748,
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The solutions Ry, R, R, and S, S;, S, are now completely determined in terms of the unknown
frequency shifts f; and f; introduced in equation (6.1). Expansion of the boundary condition

R(1,f) = (f+2)S(L.f) (6.31)
in powers of M leads to

Ry(1) = So(1),

R, (1) = 8;(1) +/18(1), (6.32)
and Ry(1) = S5(1) +/151(1) +/250(1).
Thus f; and f, are determined and
Si=15 (6.33)
and
f2=—fgln(—j7[)+%§+% 1—66—%. (6.34)

A comparison between f calculated in this way and the values obtained numerically is shown
in figure 2, for the case y = 1.4. The agreement between the real parts is very close over the
range shown, whereas the imaginary parts agree closely only when A is very small, suggesting
that the M® term has relatively large coefficients; values obtained by curve fitting are given in
the caption to figure 2(c).

If we work back through the calculation we can see that f, has an imaginary part because the
constant 7 has an imaginary part. This in turn is a consequence of the fact that we need a Hankel
function of the first kind to comply with the radiation condition and the ascending series expansion
of this function has complex coefficients. There is thus an intimate connection between the
occurrence of the instability and the ability of the system to radiate; the n/2-out-of-phase
relation between P and U characteristic of the incompressible solution is destroyed and pure
oscillations are impossible.

7. FURTHER COMMENTS

The main numerical results are plotted in figure 3 and show that m = 2 is always the most
unstable mode, although at high Mach numbers m = 3 is nearly as unstable. It is natural to
inquire how these results are affected by the nature of the velocity profile of the vortex and by
the possibility of three-dimensional disturbances of the type exp {i(wt+m0+£z)}. It is hoped
to examine these effects more fully in a later paper, but preliminary numerical results indicate
that a simple rounding of the velocity profile near x = 1 does not remov e the instability (in fact
for the same total circulation the growth rate was slightly increased) and that modes with £ > 0
are less unstable than those with £ = 0.

The mode of oscillation we have studied is a compressible modification of the unique in-
compressible oscillation. It is possible that compressibility introduces further modes with more
complicated radial structure. However, we have found no evidence of these, although we must
stress that we have not undertaken the considerable numerical work involved in a systematic
search for them.

The significance of the instability in the noise radiated from a shear layer such as that of a jet
is a matter for debate. There is by now considerable evidence that large vortex-like structures
do exist in a shear layer and that if they come under sufficient strain they become unstable and
may disintegrate (Moore & Saffman 1971, 1975). Such events would undoubtedly be powerful
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Ficure 3. Variation of the real and imaginary parts of f with M, for various values of m.

radiation centres of noise. The present results suggest that the vortices may be more unstable
than had previously been thought, since compressibility allows perturbations to extract energy
from the mean flow by virtue of the capacity to radiate, and this would no doubt influence the
acoustic radiation of a vortex in a strain field. On the other hand the magnitudes of the in-
stabilities found are too small to have much direct significance in the behaviour of a turbulent
shear layer.
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